Как турбина увеличивает мощность двигателя?

CraZu › Блог › Как работает турбина.

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.
Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.
Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.
Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува.
Главная проблема турбины – создание давления требует некоторого времени после нажатия на педаль газа. Проходит около секунды, прежде чем турбина выйдет на рабочее давление. Водитель чувствует турбояму при нажатии на газ, потом машина резко выстреливает.
Один из путей снижения турбоямы – уменьшение инерции вращающихся частей в основном снижением их веса. Это позволяет турбине и компрессору быстро ускоряться, нагнетая давление раньше. Инерция турбины преодолевается уменьшением размера турбины. Маленькая турбины выйдет на давление раньше и на более низких оборотах, но не сможет закачать достаточно воздуха на больших оборотах, когда двигателю надо действительно много воздуха. Большие обороты также опасны для маленькой турбины.
Турбина создает максимальное давление на высоких оборотах.Большая турбина хорошо качает на высоких оборотах, но отличается глубокой турбоямой, так как раскручивание ее более тяжелых частей занимает больше времени. К счастью, есть способы решить это противоречие.
Почти все автомобильные турбины имеют вестгейт, позволяющий использовать маленькую турбины для уменьшения турбоямы и предотвращающий турбину от слишком высоких скоростей на высоких оборотах двигателя. Вестгейт (от англ. Wastegate – ворота для мусора) – это клапан, позволяющий выхлопным газам обходить лопатки турбины. Вестгейт реагирует на давление. Если давление турбины становится слишком высоким, то турбина вращается слишком быстро. Вестгейт отводит часть отработавших газов мимо лопаток крыльчатки, замедляя тем самым скорость вращения турбины.
Некоторые турбины используют шариковые подшипники, но это необычные изделия – они сделаны прецизионно из продвинутых материалов, способных выдерживать температуру в турбине. Их применение объясняется тем, что они способны еще больше снизить трение по сравнению с обычными жидкими коллегами. Еще одно преимущество – они позволяют уменьшить размер вала.
Керамические лопатки турбины легче обычных стальных. Результат: турбина раскручивается еще быстрее с меньшей турбоямой.
Две турбины и дополнительные части. Некоторые двигатели используют две турбины разного размера. Маленькая турбина быстро раскручивается, уменьшая турбояму, а большая нагнетает давления на больших оборотах.
Когда воздух сжимается, он нагревается; нагретый воздух расширяется. То есть увеличение давления воздуха из турбины поднимает его температуру до попадания в цилиндры. Увеличение мощности происходит из-за увеличения количества молекул воздуха, попадающих в цилиндры, а необязательно из-за увеличения давления наддува.
Интеркулер – дополнительный компонент системы наддува, напоминающий обычных радиатор с той разницей, что воздух проходит через него снаружи и внутри. Входящий воздух проходит через лабиринты интеркулера, внешний воздух охлаждает интеркулер.
Интеркулер увеличивает мощность двигателя, охлаждая сжатый воздух из компрессора перед попаданием в двигатель. Например, при избыточном давлении 0.3 бар, интеркулер подаст 0.3 бара холодного воздуха, который плотнее и содержит больше молекул, чем теплый воздух.
Турбина помогает в условиях высокогорья, где плотность воздуха ниже. Атмосферные двигатели испытывают снижение мощности, потому что в цилиндры поступает меньше воздуха. Турбированный двигатель тоже снижает мощность, но уменьшение мощности будет не столь критичным, так как разреженный воздух легче закачивать.
Старые карбюраторные машины автоматически увеличивали подачу топлива при увеличении входящего воздуха. Современные инжекторные машины делают это до определенного момента. Инжекторная система полагается на датчики кислорода в выхлопной системе, чтобы определить правильность соотношения топливо-воздух, при добавлении турбины автоматически увеличится подача топлива.

7 главных минусов и 2 плюса турбомоторов

Наддувные моторы постепенно вытесняют атмосферные. Однако некоторые производители сокращают интервал ТО для автомобилей с турбодвигателем. Почему? Давайте разбираться.

Чем турбомотор отличается от атмосферного?

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

Будет полезно:  Как увеличить мощность дизельного двигателя своими руками?

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

Как турбина влияет на мощность двигателя. Система турбонаддува и как она работает

Опубликовано Master в 7 марта, 2019

Выбор правильного автомобиля как средства передвижения является важным решением. Здесь необходимо учитывать цену, потребление, комфорт, но есть и другие незаменимые факторы. Одним из таких факторов, который привлекает внимание к авто, является двигатель с турбонаддувом (турбина). Данная система помогает повысить мощность двигателя и предлагает экономию потребления топлива. Что такое турбонаддув, как турбина влияет мощность двигателя и общую производительность автомобиля – об этом расскажем в данном посте.

Содержание

Что такое турбонаддув

Тот, кто работает за рулем, даже если он не очень осведомлен в механике, имеет острое представление о том, как работает машина. Мощность, измеряемая в лошадиных силах, является способностью двигателя превращать топливо в движение и скорость. А это и есть тот значимый элемент, когда речь идет об эффективной, качественной и экономичной работе автомобиля.

На практике это выглядит так: каждая быстрая машина – мощная, но не всякая мощная – быстрая. Это связано с тем, что чем тяжелее транспортное средство, тем больше силы оно использует для движения.

Турбонаддув (система двигателя внутреннего сгорания на основе турбокомпрессора, или турбины) – это способ повысить мощность двигателя, используя компрессор для вытягивания и сжатия большего количества воздуха в камеру сгорания, увеличивая мощность сгорания топлива и, следовательно, увеличивая скорость передвижения авто, вне зависимости от его веса.

Как работает турбонаддув в машине

Двигатель с турбонаддувом состоит из двух частей – выпускного коллектора и турбокомпрессора. Первый отвечает за сбор газов из каждого цилиндра, которые будут поступать в выхлопную систему и выбрасываться в атмосферу.

Турбина собирает воздух, который, в свою очередь, приводит в движение винт, производя прохладный, чистый воздух. Этот воздух передается в компрессор, который уплотняет его и направляет в радиатор промежуточного охладителя, тем самым, охлаждая воздух. Таким образом, большее количество воздуха проходит через цилиндры и попадает в зону сгорания.

Схема работы турбонаддува

Двигатель работает на взрыве, а это значит, что ему нужен огонь, верно? То есть: тепло + топливо + кислород (газы, собираемые из выхлопных газов). Чем больше воздуха в системе, тем больше возможностей сжигать бензин и вырабатывать больше энергии. Прелесть в том, что он создает действенный круг, в котором тот самый газ, генерируемый двигателем (посредством взрывов), становится силой, приводящей в движение турбо систему.

Как турбина влияет на производительность автомобиля

После теоретической части следует объяснить, как турбина влияет на мощность двигателя и производительность автомобиля. Самым большим преимуществом турбины является экономный расход топлива. Но чтобы добиться такой экономии, водителю также необходимо внести свой вклад, научившись управлять своим транспортным средством безопасно, с наименьшим количеством тормозов и внезапным ускорением.

Будет полезно:  Как правильно клеить восклицательный знак на машину?

Помимо экономного расхода топлива, турбина помогает снизить выбросы загрязняющих веществ в окружающую среду. И, конечно же, с турбиной производительность авто будет на высоте (из-за нехватки кислорода транспортные средства теряют около 25% своей мощности). Двигатели с турбонаддувом повторно используют выхлопные газы.

Турбонаддув сегодня признан самым действенным механизмом усиления мощности двигателя внутреннего сгорания без увеличения частоты оборота его коленчатого вала и рабочего объема цилиндров. Система с турбонаддувом используется на бензиновых и дизельных двигателях, однако её максимальная действенность доказана на дизельных двигателях за счет высокой степени сжатия в двигателе и относительно невысокой частоты оборота коленчатого вала. В бензиновом двигателе турбонаддув может вызвать эффект детонации по причине резкого увеличения частоты оборотов двигателя, а также высокой температуры отработанных газов и сильного нагрева турбины.

Описание и принцип работы турбонаддува двигателя

Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства — турбокомпрессора (турбины). Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива. В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан — регулирует подачу отработавших газов;
  • Дроссельная заслонка — регулирует подачу воздуха на впуске;
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления — фиксирует давление наддува в системе;
  • Впускной коллектор — распределяет воздух по цилиндрам;
  • Соединительные патрубки — необходимы для крепления элементов системы между собой.

Принцип работы турбонаддува

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя;
  • повышение КПД двигателя;
  • снижение расхода топлива.

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.

Способы повышения мощности дизелей. Турбонаддув

Из формулы для определения эффективной мощности дизеля:

можно определить способы повышения мощности. Таковыми являются:

1. Увеличение диаметра цилиндра D , целесообразно до определенного предела. С увеличением диаметра цилиндра увеличиваются инерционные силы, действующие на подвижные части дизеля, возрастают массогабаритные показатели двигателя. В настоящее время диаметр цилиндров наиболее мощных МОД достигает 105…106 см;

2. Увеличение хода поршня S (расширение области применения длинноходовых дизелей). Ход поршня дизельного двигателя тесно связан с диаметром цилиндра соотношением S D . Для различных классов дизелей существуют рекомендованные значения соотношения S D . Поэтому этот способ увеличения мощности непосредственно связан с предыдущим.

3. Увеличение числа цилиндров i – для этого способа увеличения мощности дизеля так же существует разумный предел. Увеличение числа цилиндров двигателя значительно усложняет его конструкцию, снижает показатели надежности. В современных дизелях число цилиндров достигает: в МОД –до 12, в СОД – до 18, в ВОД – до 50;

4. Расширение области применения двухтактных дизелей ( z =1), имеющих большие возможности по дальнейшему снижению удельных массогабаритных показателей, чем четырехтактные дизели;

5. Увеличение числа оборотов n (форсирование дизеля) – приводит к значительному снижению ресурсных показателей двигателя, особенно у ВОД (высокооборотный двигатель);

6. Повышение среднего эффективного давления pe за счет увеличения плотности воздуха, вводимого в цилиндр.

Последний способ является наиболее эффективным и получил наименование «наддува дизеля». Использование наддува дает возможность в несколько раз (4 ÷ 5) увеличить удельную мощность двигателя без изменения его основных размеров только за счет повышения давления наддувочного воздуха – pК , и надлежащего его охлаждения.

Наддув дизеля может осуществляться следующими способами: механическим, газотурбинным и комбинированным.

При механическом наддуве нагнетатель поршневого, ротативного или центробежного типа приводится в действие от коленчатого вала двигателя. Применение механического наддува влечет за собой потерю мощности двигателя на привод компрессора, которая может достигать 7 ÷ 10 % от эффективной мощности двигателя. В чистом виде механический наддув в современных дизелях, как правило, не применяется.

В настоящее время в двух- и четырехтактных дизелях применяют газотурбинный наддув. Он может осуществляться следующими способами:

– турбонаддув с изобарной турбиной : при этом способе наддува выхлопные газы собираются в выхлопном коллекторе. В коллекторе происходит выравнивание давления газов и поля скоростей. Из выхлопного коллектора при постоянном давлении газы подаются на рабочие лопатки газовой турбины, приводящей во вращение компрессор;

– турбонаддув с импульсной турбиной: при таком способе наддува используется кинетическая энергия газов в виде импульсов в периоды свободного выпуска. Соединительные трубы между выпускными окнами или клапанами и газовыми турбинами делаются как можно короче с целью уменьшения дросселирования газов в выхлопном патрубке и максимального сохранения их кинетической и тепловой энергии.

Будет полезно:  Где делают дубликаты номеров на машину?

Рабочий цикл дизельного двигателя без наддува состоит из следующих термодинамических процессов (рис. 27):

Рабочий цикл дизеля с изобарным наддувом состоит из следующих термодинамических процессов (рис. 28):

  • 1− 2 – адиабатное сжатие воздуха в рабочем цилиндре двигателя;
  • 2 − 3 – изохорный подвод тепла Q1′ в цилиндре при сжигании части топлива в конце такта сжатия;
  • 3 − 4 – изобарный подвод тепла Q 1′′ при сжигании части топлива в начале такта расширения;
  • 4 − 5 – адиабатное расширение газов в цилиндре двигателя;
  • 5 −1 – изохорный отвод тепла в газовыхлопной коллектор;
  • 9 − 6 – изобарный подвод теплоты Q2 к рабочему телу (выравнивание давлений газов в коллекторе перед подачей их в изобарную турбину);
  • 6 − 7 – адиабатное расширение газов в газовой турбине;
  • 7 − 8 – изобарный отвод теплоты Q2′ к холодному источнику (выброс выхлопных газов в атмосферу;
  • 8 − 9 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 9 −1 – изобарный отвод теплоты Q2′′ в охладителе надувочного воздуха

Площадь фигуры a − 6 − 7 − b на диаграмме численно равна работе, совершаемой при расширении газов в газовой турбине. Площадь фигуры a − 9 − 8 − b численно равна работе, затраченной на сжатие воздуха в компрессоре. Площадь, ограниченная фигурой 6 − 7 − 8 − 9 численно равна полезной работе, полученной при использовании турбокомпрессора (приращение полезной работы цикла с изобарной турбиной).

Термодинамический цикл дизеля с импульсным наддувом, в отличие от изобарного, имеет следующие особенности (рис. 29):

  • 5 − 6 – продукты сгорания, совершив работу расширения в цилиндре двигателя, без потерь поступают в газовую турбину, где продолжается их дальнейшее расширение;
  • 6 − 7 – изобарный отвод теплоты Q′2 от продуктов сгорания к холодному источнику (выброс газов в атмосферу);
  • 7 − 8 – адиабатное сжатие воздуха в турбокомпрессоре;
  • 8 −1 – изобарный отвод теплоты Q′′2 от сжатого воздуха в воздухоохладителе.

Площадь диаграммы a − 5 − 6 − b численно равна работе, совершаемой газами в газовой турбине; площадь диаграммы c − 8 − 7 − b – работе сжатия компрессора. Площадь фигуры 1 − 5 − 6 − 7 − 8 численно равна полезной работе турбокомпрессора с импульсной турбиной (приращение полезной работы цикла с импульсной турбиной).

Применение газотурбинного наддува дизельного двигателя позволяет:

  • – наиболее полно использовать тепловую и кинетическую энергию продуктов сгорания, покидающих цилиндры двигателя (т.е уменьшить потери с уходящими газами QГ – самую большую составляющую тепловых потерь дизельного двигателя);
  • – без дополнительных затрат энергии осуществить сжатие воздуха, подаваемого в цилиндры двигателя, что в свою очередь повышает среднее эффективное давление и, соответственно, мощность дизеля;
  • – за счет использования перечисленных мероприятий повысить общий КПД дизельной энергетической установки.

Основные компоновочные схемы дизельных двигателей с наддувом

Все компоновочные схемы судовых дизельных установок с наддувом можно разделить на три большие группы:

  • схемы наддува с механической связью между поршневым двигателем и наддувочным агрегатом (схемы с подключенным турбокомпрессором);
  • схемы наддува с газовой связью (со свободным турбокомпрессором);
  • комбинированые схемы наддува , включающие сочетания механической и газовой связи, либо использование различных способов газотурбинного наддува (изобарный и импульсный наддувы).

Ниже рассмотрены наиболее часто применяемые схемы осуществления механического, газового и комбинированного наддува дизелей, их особенности, преимущества и недостатки.

Схема наддува с механической связью

В схеме наддува с механической связью (рис. 31.а) компрессор приводится в действие непосредственно от коленчатого вала дизеля через повышающую механическую передачу – мультипликатор. Сжатый в компрессоре воздух поступает в воздухоохладитель, где от него отводится часть теплоты (повышается плотность заряда воздуха), и затем направляется в наддувочный ресивер двигателя.

Основным недостатком схемы является тот факт, что на привод компрессора затрачивается значительная часть мощности (от 7 до 10 %), полученной в рабочих цилиндрах двигателя (потери N К ). Это в свою очередь приводит к некоторому снижению мощности двигателя и его экономичности. Такая схема обычно применяется в дизелях с низкой степенью наддува, а также в двухтактных дизелях без наддува.

Схема наддува с газовой связью (импульсная турбина)

В данной схеме наддува (рис. 31.б) продукты сгорания из двигателя по коротким патрубкам направляются в импульсную газовую турбину, где продолжается их расширение. Газовая турбина преобразует энергию газов в механическую работу и передает ее компрессору, находящемуся с ней на одном валу. При использовании схемы с чисто газовой связью мощность, полученная в турбине, на всех режимах работы равна мощности компрессора. Как и в предыдущей схеме, воздух, сжатый в компрессоре, через воздухоохладитель поступает в наддувочный ресивер двигателя.

Основными преимуществами рассмотренной схемы являются: простота конструкции, небольшие габариты турбокомпрессора, автоматическая газовая связь между нагрузкой двигателя, частотой вращения турбины и параметрами наддувочного воздуха. Недостатком схемы (по сравнению со схемой с механической связью) является ухудшение пусковых качеств дизелей, так как в начальный момент пуска дизеля турбина не работает.

Схема наддува с комбинированной связью

В рассматриваемой схеме наддува (рис. 31.в) турбоагрегат частично снимает мощность с коленчатого вала двигателя через мультипликатор, и частично – с вала импульсной газовой турбины. Причем на мощностях двигателя, близких к полным, работа турбокомпрессора обеспечивается только за счет мощности, вырабатываемой газовой турбиной, а на малых мощностях и в пусковых режимах бóльшая часть мощности отбирается от коленчатого вала двигателя. Данная схема обеспечивает хорошие пусковые качества дизеля и возможность форсирования двигателя по наддуву. Недостатками схемы являются усложнение дизеля за счет применения повышающей передачи – мультипликатора, и связанные с механической передачей дополнительные потери на привод компрессора на малых нагрузках двигателя.

Схема с изобарным наддувом

В этой схеме наддува (рис. 31.г) отработавшие газы из цилиндров двигателя выходят в выпускной коллектор, где выравнивается поле скоростей и давлений газов, а затем, практически при постоянном давлении, поступают в изобарную газовую турбину. Газовая турбина передает мощность компрессору, осуществляющему сжатие воздуха и находящемуся с ней на одном валу. Сжатый воздух через охладитель направляется в наддувочный ресивер двигателя.

При использовании чисто изобарного наддува на режимах малых нагрузок двигателя турбокомпрессор не обеспечивает потребный расход воздуха. На этих режимах работы двигателя дополнительно включаются в работу электроприводные компрессоры, специально установленные на дизеле.

Схема двухступенчатого комбинированного наддува

В рассматриваемой схеме наддува (рис. 31.д) продукты сгорания из цилиндров дизеля сначала направляются в импульсную газовую турбину, где происходит преобразование энергии газов в механическую работу вращения ротора турбины, а затем в выхлопной коллектор дизеля, где происходит выравнивание давления газов. Из выхлопного коллектора продукты сгорания поступают на рабочие лопатки изобарной газовой турбины, отдают ей свою энергию и выбрасываются в атмосферу. Мощность, вырабатываемая импульсной газовой турбиной, передается компрессору второй ступени сжатия, мощность изобарной турбины – компрессору первой ступени сжатия. Воздух из атмосферы поступает в компрессор первой ступени сжатия, охлаждается в промежуточном охладителе, досжимается в компрессоре второй ступени сжатия, и через воздухоохладитель поступает в наддувочный ресивер дизеля.

Такие схемы используются при высокой степени наддува с целью повышения показателей экономичности дизеля за счет более эффективного использования энергии газов а также более высоких КПД газовых турбин.

Схема наддува с использованием подпоршневых полостей

В малооборотных крейцкопфных дизелях в качестве приводного компрессора нередко используют подпоршневые полости цилиндров. В этом случае воздух, сжатый в основном турбокомпрессоре, приводимом в действие изобарной газовой турбиной, через охладитель поступает в герметичный картер двигателя к подпоршневым полостям (рис. 31.е). При движении поршня от ВМТ к НМТ воздух дополнительно сжимается и направляется в наддувочный ресивер дизеля.

При такой схеме наддува часть мощности двигателя тратится на сжатие воздуха в подпоршневых полостях.

В некоторых случаях могут использоваться и более «экзотические» схемы наддува. Например, в конструкции дизельного двигателя японской фирмы ххххххх для наддува могут использоваться часть рабочих цилиндров двигателя. При работе двигателя на частичных нагрузках часть цилиндров отключается от топливной системы, и они используются в роли компрессорных цилиндров.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Источники:

http://www.zr.ru/content/articles/919836-7-glavnykh-nedostatkov-i-2-plyus/

http://turbi.com.ua/kak-turbina-vlijaet-na-moshhnost-dvigatelja/

http://techautoport.ru/dvigatel/vpusknaya-sistema/turbonadduv-dvigatelya.html

http://mirmarine.net/dvs/659-sposoby-povysheniya-moshchnosti-dizelej-turbonadduv

http://techautoport.ru/dvigatel/toplivnaya-sistema/tnvd.html

Ссылка на основную публикацию
Adblock
detector